
R3S.js – Towards Responsive Visualizations
Juliana Leclaire Aurélien Tabard

Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205,

F-69622, France
aurelien.tabard@univ-lyon1.fr

ABSTRACT
We present our preliminary work on R3S.js, a Javascript
library supporting the development of Responsive
Visualizations, i.e., Web visualizations adapted to the
device they are displayed on. R3S.js is based on D3.js and
brings the following contributions: 1. Handling of tooltips
and especially their triggering on tactile devices; 2.
Abstraction of input events to avoid dealing with mouse,
touch or styluses separately; 3. Pre-defined media-queries
to automatically control the size of graphical elements
depending on the device size and resolution. And 4.
Automated resizing of specific visualizations. We show
how basic D3 line-chart and treemap could benefit from
more responsiveness. And we conclude with a discussion
on automated adaption of visualizations to devices’
properties, and whether Responsive Web Design principles
provide good adaptation strategies.

Author Keywords
Visualisation; adaptation; plasticity; Responsive Web
Design; mobile; d3js.

ACM Classification Keywords
D.2.2. Design Tools and Techniques; H.5.2 User Interfaces.

INTRODUCTION
Since the beginning of the 1990’s, digital devices of varied
form factors and supporting various interaction modalities
have emerged. User Interface (UI) adaptation mechanisms
are an interesting strategy to avoid device-specific
development [6]. Besides the devices themselves, adaption
efforts started to also consider the environment and the
users, i.e. the context of use, for instance with plastic
UI [13].

More recently, with the commercial success of smartphones
and tablets, Responsive Web Design (RWD) emerged as a
simple approach to adaptation. Unlike richer adaptive
approaches, RWD does not take into account the
specificities of users or the environment but only devices’
properties. RWD principles center mostly around fluid

layout of Web pages on mobile devices, tablets, and
computers screens. We can summarize the responsive
approach to the following points1:

• Adapt the spatial layout to the screen size.
• Adapt images to the screen resolution (especially

with ultra high fidelity displays).
• Simplify pages for mobile devices with low

bandwidth.
• Make links and buttons clickable and touchable.

These principles are widely used for Web pages today and
are starting to be adopted for images2 and videos. Although
they have been taken into account in Web-based
information visualization, it is often in an ad-hoc manner.
For example, the New York Times visualizations are often
designed to handle touch. The approach consisting in
designing first for devices with a small screen size and then
extending to larger and more capable devices has been
described in practioner conferences, for example by Gabriel
Florit from the Boston Globe at OpenVizConf 20133 or
Dominikus Baur at JSConfEU 20144.

Building on this previous work, we present our preliminary
work on R3S.js, a library based on D3.js that facilitates the
development of responsive visualizations. R3S.js helps
developers to incorporate adaptation mechanisms in their
visualizations. More specifically we bring four
contributions:

1. Abstraction of input events to avoid dealing
separately with mice, touch or styluses.

2. Management of tooltips, especially by providing
means to have them pop-up on touch devices.

3. Predefined media-queries to automatically adjust
the size of the main graphical elements (font,
tooltips, and label size) to the size and resolution
of the device.

4. Automated resizing of the visualization itself.

1 Responsive Web Design Demystified, 2011, Matt Doyle,
http://www.elated.com/articles/responsive-web-design-demystified
2 https://www.w3.org/community/respimg/
3 Gabriel Florit, 2013, On Responsive Design and Data
Visualization, OpenVis Conf, https://youtu.be/BrmwjVdaxMM
4 Dominikus Baur, 2014, Web-based data visualization on mobile
devices, JSConfEU, https://youtu.be/X2ZlDrx6dAw

The copyright is held by the owner/author(s).
A non-exclusive license is granted by the owner/author(s) for the
paper to be published as part of the proceedings of the DEXIS
2015 Workshop on Data Exploration for Interactive Surfaces. The
workshop was held in conjunction with ACM ITS, November 15-
-18, 2015, Funchal, Portugal.

We discuss the challenges of making responsive
visualizations, based on the case of a simple Treemap and a
line-chart, and show how R3S.js could help. We conclude
on whether Responsive Web Design mechanisms are suited
for visualization.

RELATED WORK
While Responsive Web Design gained a lot of popularity,
research on adaptation also proposed to leverage Web
standards and emerging HTML standards, for instance
using columns to let content flow on screens of various
sizes [8], or to handle touch in a generic manner [9].

Mobile visualizations
Several examples of visualizations for phones [2] or large
interactive displays [7] have demonstrated the relevance of
touch devices to visualize and explore data. Regarding
interaction, recent work such as TouchWave [1] or Kinetica
[10], demonstrated that touch input could support
understanding and create engaging experiences of data
exploration. However, most visualization toolkits are still
geared towards interaction with a mouse and keyboard.
Zoomable visualizations lend themselves particularly well
to adaption [5], but they nonetheless require specific
adjustments.

In their survey of mobile visualizations, Sadowski and
Heidmann [11] note that “Tablets and smartphones are not
only varying in size but are also providing new interaction
methods or sensors which enable new design possibilities”,
which suggests that adaptation could be about retargeting
input and output modalities to other ones depending of their
availability on different devices.

D3.js
D3.js5 is a Javascript library sometimes referred to as a
visualization kernel [4], in the sense that it provides the
core functionalities to create novel Web based
visualizations. D3 is based on the browser’s Document
Object Model (DOM), which enables developers to apply
transformations to data Since D3 is based on Scalable
Vector Graphics (SVG) and the DOM, scaling to different
screen size is relatively straightforward. And the use of
Web standards such as CSS makes it possible to modify
graphical properties of visualizations. Nonetheless
adaptation mechanisms are not offered by D3.js. This can
be explained by D3 focus on offering rich control on the
basic elements of interactive visualizations, rather than
offering a library of ready to use visualizations. This
motivates our work to offer alongside D3.js a library
supporting the development of adaptive visualizations.

5 http://d3js.org/

CHALLENGES IN DESIGNING RESPONSIVE
VISUALIZATIONS
Based on the related work and our experience adapting a
line-graph and a Treemap to various devices, we have
identified the following challenges.

Variations in input modalities across devices
Touch devices have different input modalities than laptop
or desktop computers. For instance, while a mouse scroll
often controls zoom levels on computers, a pinch gesture is
generally preferred on touch devices. Although the
correspondence is well accepted for zooming, there is rarely
a generic correspondence between a touch-based and a
mouse-based interaction technique. For example, hovering
with a mouse, is difficult to translate to touch devices.
Different applications and operating systems handle this
differently, either through a long touch, or quick tap or a
gesture.

Besides interaction modalities, the form of the devices has
an impact on possible interactions. Finger size is rarely a
problem on large screens, but can become one on small
mobile devices [3], where the hand or even a single finger
can easily hide the points of interests.

Variations in displays
The main motivation behind RWD is to manage screens of
various sizes and resolutions, i.e., the available display
space. We separate display sizes into five broad categories:
Large screens with a diagonal size larger than 27”, desktop
computers with a size of 19” to 27”, laptops with screens
ranging from 11” to 17”, tablets between 8” and 11”, and
smartphone between 5” and 8”.

Screen resolution can vary a lot and smartphones may have
more pixels than a 55” touch screens. So relying on either
screen resolution or screen size, or even a mix of the two
such as pixels per inch (ppi), may not be satisfying. Text at
a small size on a large screen with low resolution may
become sharp but unreadable of a small screen with high
resolution if proportions are preserved. For a given
resolution, the smaller the screen, the smaller graphical
elements will become. Some high-resolution devices (e.g.
Retina devices) already offer a lower “virtual” resolution to
simplify display management.

Finally, besides screen size and resolution, the width-height
ratio of a smartphone, a tablet and a computer screen are
often different.

Use cases
We studied two simple visualizations offered alongside the
D3.js library to better understand the challenges of
developing responsive visualizations. First, a line chart,
presented the following challenges (see figure 1):

• The size of the line and the axes are not updated
when the window is resized.

• The quantity of information displayed does not
depend of the available screen space and its
resolution. A line with lots of variations can

become unreadable as they become squeezed
horizontally.

• It is difficult to explore specific zones or points on
the line.

• When adding interaction capabilities to the
visualization, the “fat finger” problems appears.

Second, a Treemap visualization revealed several problems
when displayed on different devices :

• Labels were displayed as the visualization loaded,
and when no space was available they were not
displayed. This is not a problem on large displays
but quickly becomes one when most labels are not
displayed.

• The layout of the rectangles is not adapted to the
screen size.

R3S.JS
Based on the challenges and issues identified above, we
have started to develop R3S.js6 (figure 2), a library to ease
the development of responsive visualizations. We present
here our preliminary work on the library.

Event management
R3S.js offers a ResponsiveEvent class to bind callback
functions to objects when an event is triggered. By default,
ResponsiveEvent establishes a correspondence between
mouse events and touch events. Since the default
correspondence may not always be the most appropriate, it
can be changed by extending the object. Depending on the
use case, it can be better to use specific events rather than
others, e.g. mouseover event can be associated to a
touchenter in some cases, a touchmove in other cases or
even a simple tap depending on the action triggered by the
event.

Tooltip Management
Tooltips are a classical method to display extra information
about points of interests while keeping the context visible.
Mouse hovering often triggers Tooltips. But very few touch
devices have the ability to detect finger moving over the
surface. The Tooltip object makes tooltip use more

6 http://juliana23.github.io/responsiveVisualisations/

straightforward by removing the need to handle different
input event listeners. At the moment, developers still have
to handle callbacks and dynamically assign the content of
the tooltip related to the hovered object. This could
probably be improved in future versions of R3S.js, so that
the content of tooltips is defined with the object.

Media queries
Media queries enable developers to specify rules that
change the CSS style of a page based on some conditions.
Although media queries were originally designed to link a
specific style to a specific medium (e.g. printouts or
screens), media queries now support the activation of styles
when some criteria are met, for example a device or
window having a given width, this is called a breakpoint.

Breakpoints
We have defined a series of breakpoints adapted to
visualizations, especially on small devices, while taking
into account portrait and landscape orientation (see Table
1). Besides size and orientation R3S media queries also
consider the type of devices. Further work would involve
dealing with “real” displayed sizes using ppi instead of
pixels.

Table 1. Media queries.

Media queries configuration with Less
Less7 is a CSS pre-processor. It enables developers to
generate style sheets using variables, functions or
inheritance. Default values for media queries breakpoints

7 http://lesscss.org/

Min-
width

Max-
width Orientation Device

X 320 X Phone
321 768 X Phone-landscape
1024 X X Desktop
1824 X X Large screen
768 1024 X Tablet
321 768 landscape Phone-landscape-strict
321 768 portrait Phone-portrait-strict
768 1024 landscape Tablet-landscape-strict
768 1024 portrait Tablet-portrait-strict

Figure 2. Adaptation of a Treemap visualization with R3S.js

Figure 1. Timeline visualization offered with d3.js

and textual elements such as fonts, labels and tooltips size
are defined in a less file. A JavaScript utility class is
dedicated to setting less variables and adjust them if
needed. It generates getters and setters for all the variables
defined in less files. Developers can then change
dynamically the style of their visualizations.

Axes management
Finally, R3S.js offers an Axis objects that handles
visualization resizing. Whenever a resizing happens (on
load or later on), Axis will recompute and redraw its axis
automatically. Developers only set an initial container size;
the object will then compute the initial ratio and marks and
will maintain the ratio and adjust the marks whenever the
object is redrawn.

CONCLUSION AND FUTURE WORK
We have presented our preliminary work on R3S.js a
library for responsive visualizations. Further work is
required to make the library more in line with D3
philosophy and to better work alongside it. D3 being low
level, it also means that we only tackled a very limited set
of visualizations in our work, and that more efforts are
needed to make a library like R3S.js really generic and
reusable.

An alternative to working with D3, would be to explore if
toolkits of more ready to use visualizations wouldn’t be a
better place to offer responsive facilities in a totally
transparent manner. Or also in the spirit of reducing the
amount of code required, another possibility would be to
incorporate responsive elements in a declarative
visualization format such as Vega8 [12].

Our work only touches on one aspect of adaptation; we
mostly ignored how visualizations would be explored
differently on a smartphone and a computer. We can
imagine that in many cases the questions asked while
interacting with a tablet on a sofa would be different from
the ones asked while sitting on a desk in font of a dual-
display.

In this perspective, it would be interesting to explore how
devices could complement each other. For instance, how
one could explore datasets using both a tablet and a large
screen. Each device supporting interaction that is most
suited, e.g., focused exploration on a tablet and context on a
large screen, and how adaptive methods could be used to
split relevant visualization elements to the right devices.

REFERENCES
1. Baur, D., Lee, B., & Carpendale, S. (2012).

TouchWave: kinetic multi-touch manipulation for
hierarchical stacked graphs. In Proceedings of the 2012
ACM international conference on Interactive tabletops
and surfaces (pp. 255-264). ACM.

8 http://vega.github.io/vega/

2. Bederson, B. B., Clamage, A., Czerwinski, M. P., &
Robertson, G. G. (2004). DateLens: A fisheye calendar
interface for PDAs. ACM Transactions on Computer-
Human Interaction (TOCHI), 11(1), 90-119.

3. Boring, S., Ledo, D., Chen, X. A., Marquardt, N.,
Tang, A., & Greenberg, S. (2012). The fat thumb:
using the thumb's contact size for single-handed mobile
interaction. In Proceedings of the 14th international
conference on Human-computer interaction with
mobile devices and services (pp. 39-48). ACM.

4. Bostock, M., Ogievetsky, V., & Heer, J. (2011). D³
data-driven documents. Visualization and Computer
Graphics, IEEE Transactions on, 17(12), 2301-2309.

5. Blanch, R., & Lecolinet, E. (2007). Browsing
zoomable treemaps: Structure-aware multi-scale
navigation techniques. Visualization and Computer
Graphics, IEEE Transactions on, 13(6), 1248-1253.

6. Browne, D., Totterdell, P. & Norman, M. (eds.) (1990),
Adaptive User Interfaces, Computer and People Series,
Academic Press.

7. Jakobsen, M. R., & Hornbæk, K. (2013). Interactive
visualizations on large and small displays: The
interrelation of display size, information space, and
scale. Visualization and Computer Graphics, IEEE
Transactions on, 19(12), 2336-2345.

8. Nebeling, M., Matulic, F., Streit, L., and Norrie. M. C.,
(2011). Adaptive layout template for effective web
content presentation in large-screen contexts. In
Proceedings of the 11th ACM symposium on Document
engineering (DocEng '11). ACM, New York, NY,
USA, 219-228.

9. Nebeling, M., & Norrie, M. (2012). jQMultiTouch:
lightweight toolkit and development framework for
multi-touch/multi-device web interfaces. In
Proceedings of the 4th ACM SIGCHI symposium on
Engineering interactive computing systems (pp. 61-70).
ACM.

10. Rzeszotarski, J. M., & Kittur, A. (2014). Kinetica:
Naturalistic multi-touch data visualization. In
Proceedings of the 32nd annual ACM conference on
Human factors in computing systems (pp. 897-906).
ACM.

11. Sadowski, S., & Heidmann, F. A Visual Survey of
Information Visualizations on Smartphones.

12. Satyanarayan, A., Wongsuphasawat, K., & Heer, J.
(2014). Declarative interaction design for data
visualization. In Proceedings of the 27th annual ACM
symposium on User interface software and technology
(pp. 669-678). ACM.

13. Thevenin, D., & Coutaz, J. (1999). Plasticity of user
interfaces: Framework and research agenda. In
Proceedings of INTERACT (Vol. 99, pp. 110-117).

