Méthodes d'évaluation empirique Analyses statistiques

Aurélien Tabard

Méthodes d'évaluation Matin

 Introduction • Approches d'évaluation • Méthodes analytiques • Méthodes empiriques Concevoir une expérience 1h • Exemples • Les bases • La structure d'une expérience • Mener une expérience Collecter les données • Mise en pratique **1**h

~ 45 min / 1h

Before starting Scaling

We now have access to large audiences :

- On the Web
- On mobile platforms

With two interesting properties :

- Ease of distribution of updates
- Ease of logging

We can scale up studies, as the one discussed later (would deserve a lecture in itself)

Remote usability studies

Méthodologie 🗸

Panel Solution

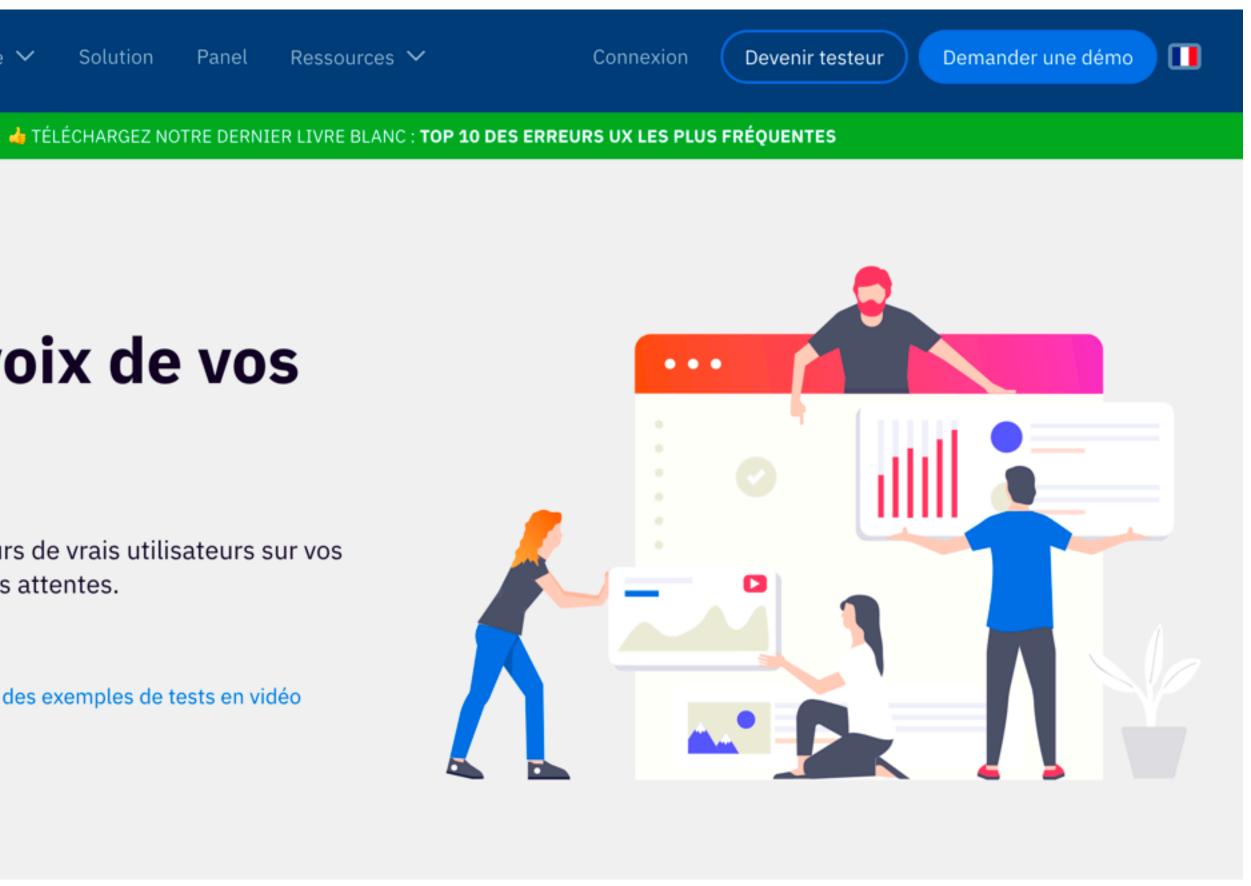
Écoutez la voix de vos utilisateurs

TEST UTILISATEUR À DISTANCE

Collectez rapidement des retours de vrais utilisateurs sur vos sites & appli et comprenez leurs attentes.

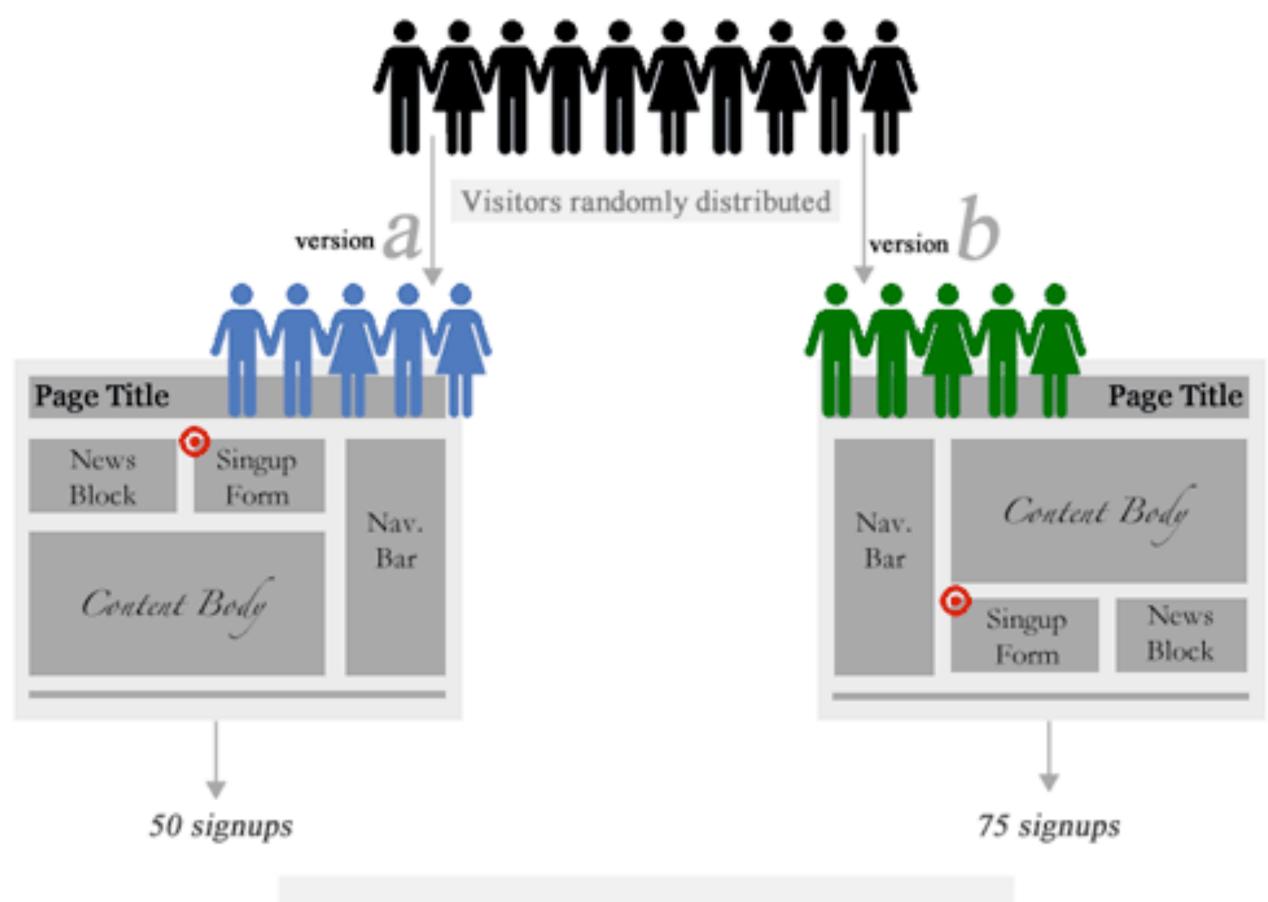
Demander une démo

Voir des exemples de tests en vidéo



Controlled distribution of Beta versions

A/B testing



Version B is better than version A

A/B testing e.g. optimizely.com

Test alternative designs of webpages, or mobile screens. Helps identify :

- better form designs
- better conversion rates (e.g. for a newsletter) lacksquare

Limits :

- You need significant traffic
- Does not replace user studies ! \bullet
- Does not provide explanations / qualitative insights
- Arbitrary changes can be disturbing to users ullet
- Complex when there is tailored and social content, e.g., Facebook
- Often used for incremental changes, complex for full redesigns

Statistical analysis Afternoon

- Practice
- Checking your data
- Significance testing with t-tests
- Significance testing with Anova
- Measuring effect sizes
- Beyond significance testing

Statistical analysis

- Practice
- Checking your data
- Significance testing with t-tests
- Significance testing with Anova
- Measuring effect sizes
- Beyond significance testing

Practice

How could you test the effect of two soporific drugs (independent variable) on amount of sleep (dependent variable)

Practice

You want to test the effect of two soporific drugs (independent variable) on amount of sleep(dependent variable).

Recruit 10 participants and make then sleep to get their basic (control) sleep time.

Then you give them drug 1 and note the difference of sleep time.

You do the same for drug 2.

0.7 2 -1.6 3 -0.2 4 -1.2 5 -0.1 3.4 6 3.7 7 8.0 8 9 0.0 2.0 10

sleep extra drug 1

sleep extra drug 2

- 1 1.9 2 0.8
- 3 1.1
- 4 0.1
- 5 -0.1
- 6 4.4 7 5.5
- 8 1.6
- 9 4.6
- 10 3.4

Practice

amount of sleep (dependent variable).

Two possibilities :

- Participants went through both conditions, i.e. had both drugs = within subject experiment so the **data is paired**
- Participants were **split into 2 groups** (e.g. 10 new participants for drug 2) = between subject experiment so the **data is unpaired**

You want to test the effect of two soporific drugs (independent variable) on

Practice 2 Identify the best controller

You have created a new VR app, and have to device which VR controller is better.

How do we proceed?

Statistical analysis This week

- Practice
- Checking your data
- Significance testing with t-tests
- Significance testing with Anova
- Measuring effect sizes
- Beyond significance testing

Who is fastest?

It depends of:

- the median differences
- the data distribution (standard deviation)
- the sample size
- whether averages are significantly different

First : the exploratory part

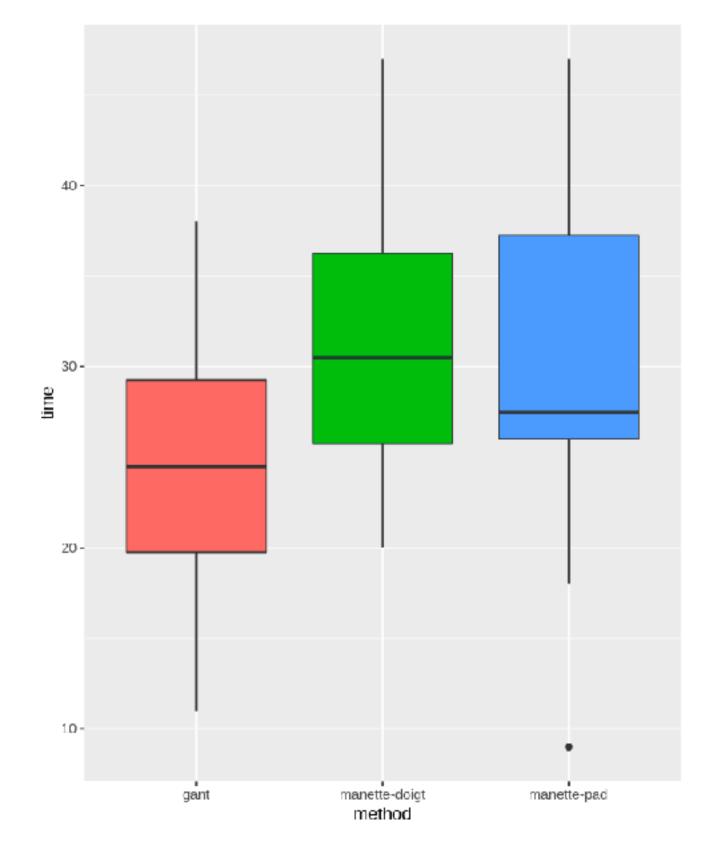
look at the data with basic plots and statistics to get an idea.

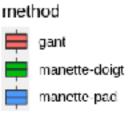
Plotting your data

https://colab.research.google.com/drive/1ls8hWFtlnLXOoHqpU7C5jPR2vHLO8y3D?usp=sharing

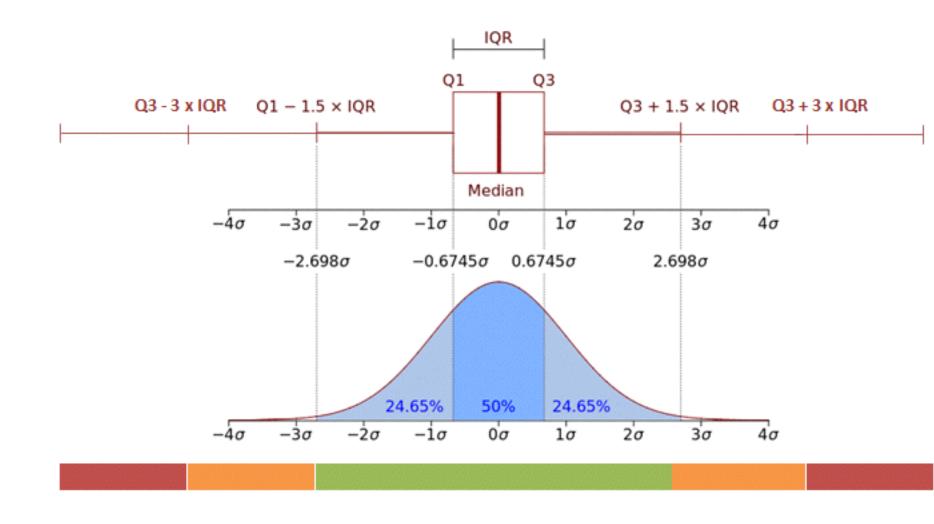
head(data) #

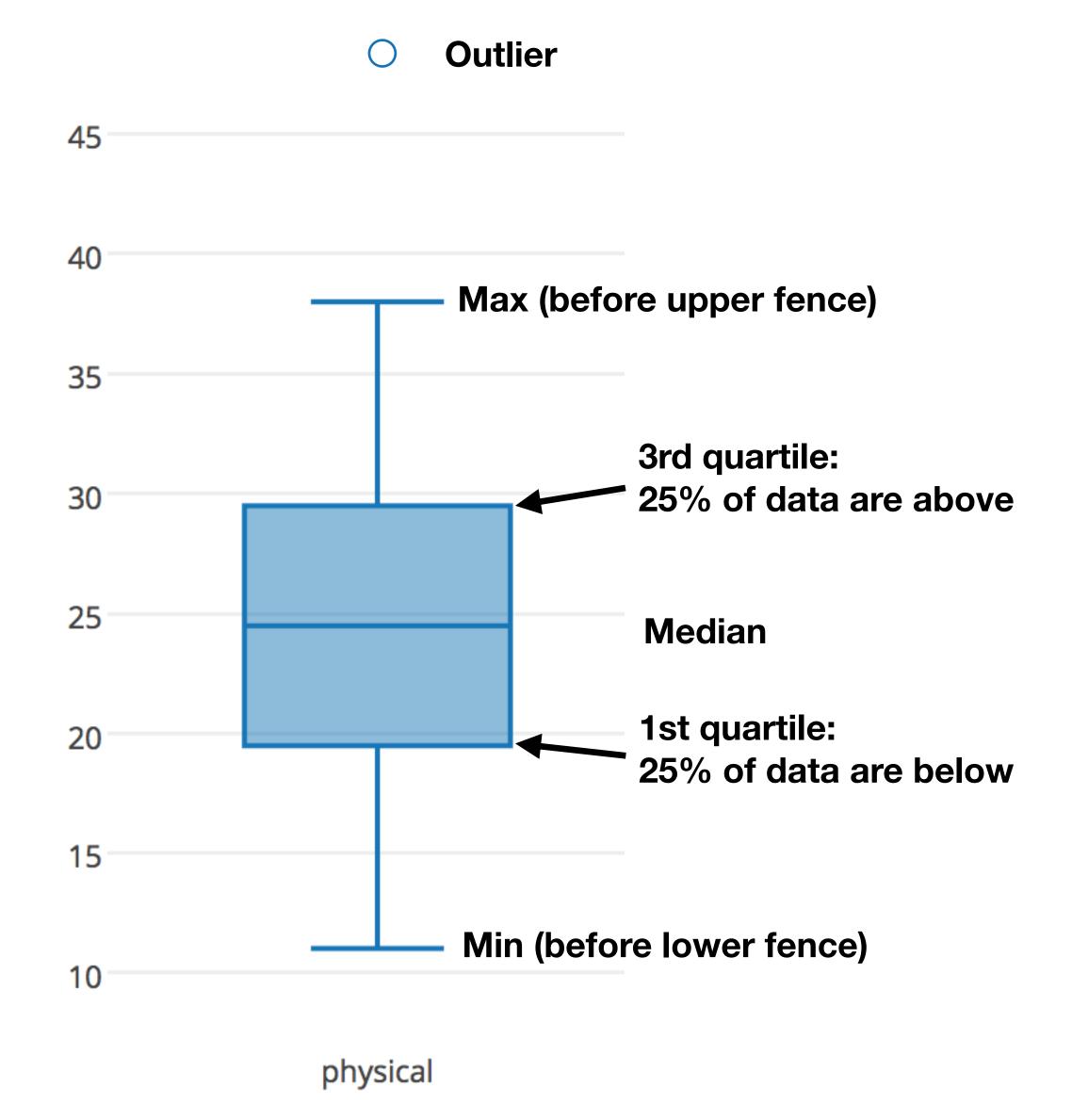
ggplot(data, aes(x=method, y=time, fill=method)) + geom_boxplot()





Reading a boxplot





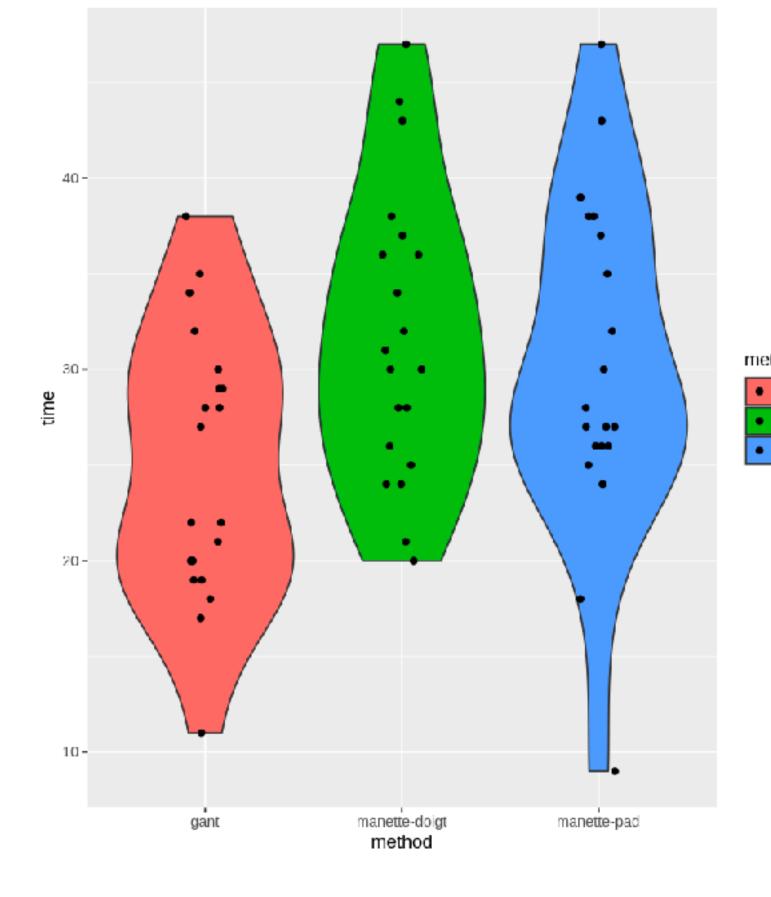
Prefer a violin plot

https://colab.research.google.com/drive/1ls8hWFtlnLXOoHqpU7C5jPR2vHLO8y3D?usp=sharing

head(data) #

ggplot(data, aes(x=method, y=time, fill=method)) + geom_boxplot()

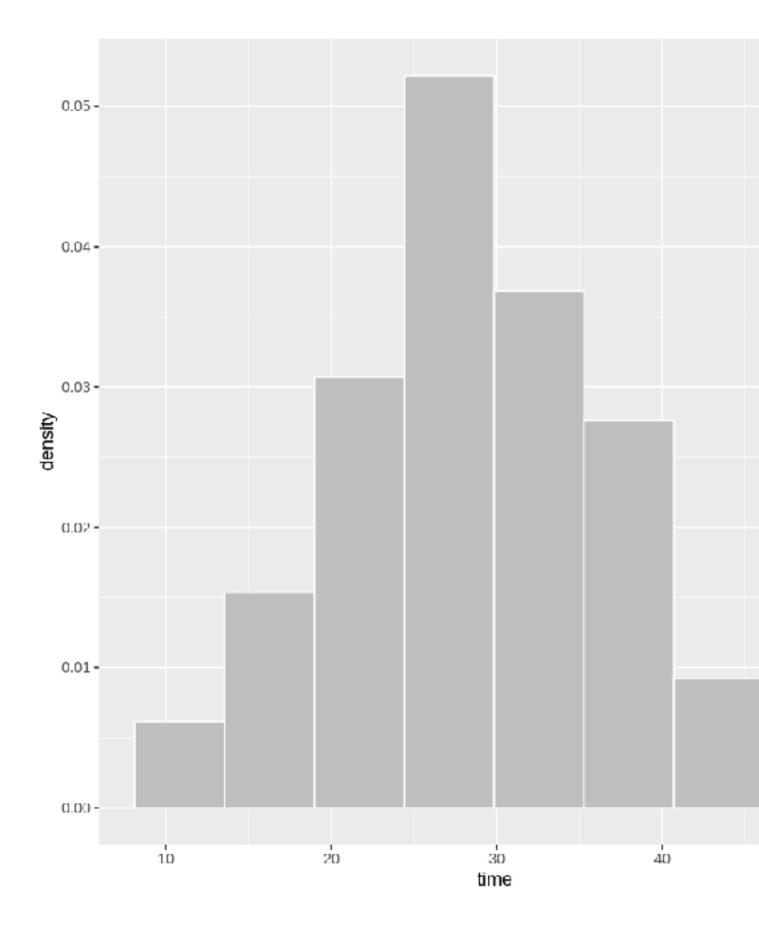
ggplot(data, aes(x=method, y=time, fill=method)) + geom violin() + geom jitter(height = 0, width = 0.1)

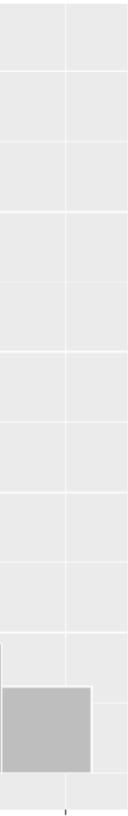


Looking at your data distribution

https://colab.research.google.com/drive/1ls8hWFtInLXOoHqpU7C5jPR2vHLO8y3D?usp=sharing

```
ggplot(data, aes(x = time)) +
    geom histogram(aes(y =..density..),
                   bins=8, # or specify manually :
                   \# breaks = seq(0, 60, by = 10),
                   colour = "white", fill="grey75")
```



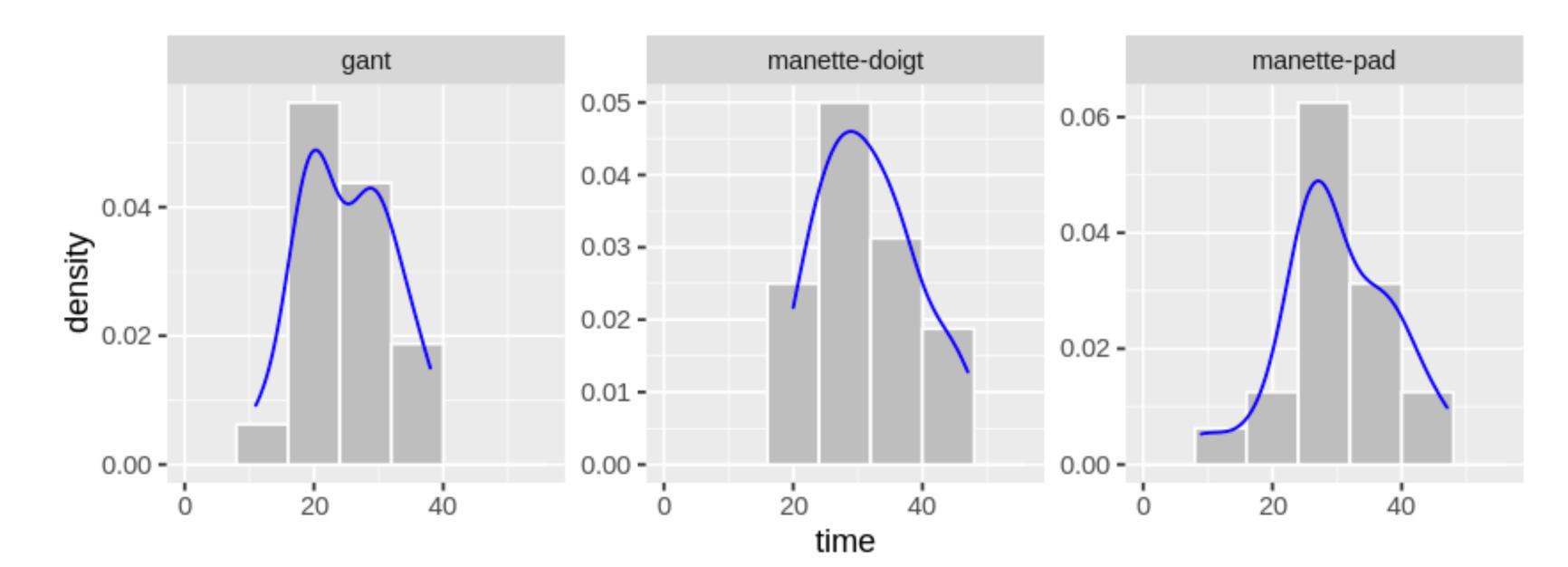


50

Looking at your data distribution

https://colab.research.google.com/drive/1ls8hWFtInLXOoHqpU7C5jPR2vHLO8y3D?usp=sharing

ggplot(data, aes(x=time)) + geom histogram(aes(y=..density..), breaks = seq(0, 60,colour = "white", f facet wrap(~method, scales = "free" geom density(aes(y=..density..), co.



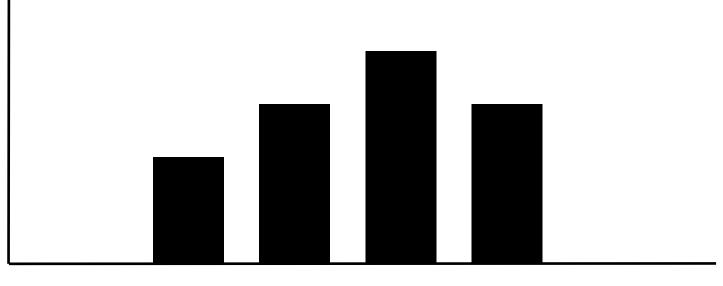
Statistical analysis

- Practice
- Checking your data
- Significance testing
 - with t-tests
 - with Anova
- Measuring effect sizes
- Beyond significance testing

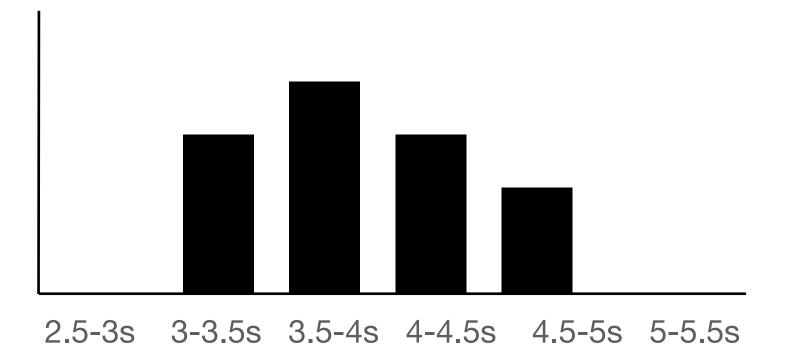
Statistical significance A result is called statistically significant

if it is unlikely to have occurred by chance

Une différence significative ?



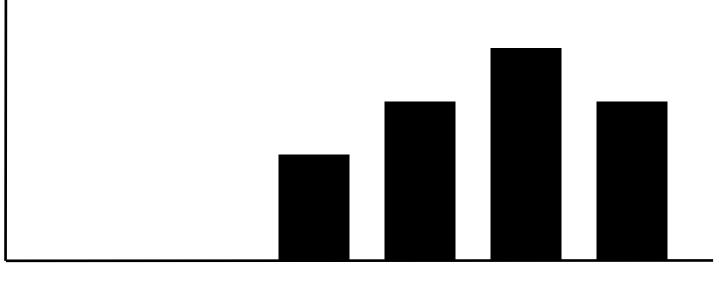
2.5-3s 3-3.5s 3.5-4s 4-4.5s 4.5-5s 5-5.5s



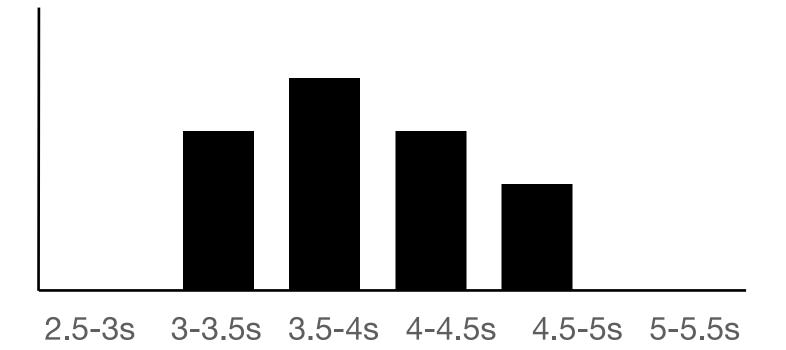
45% chance that the mean of a sample from each group is similar

TTEST pvalue = 0.4548

Une différence significative ?



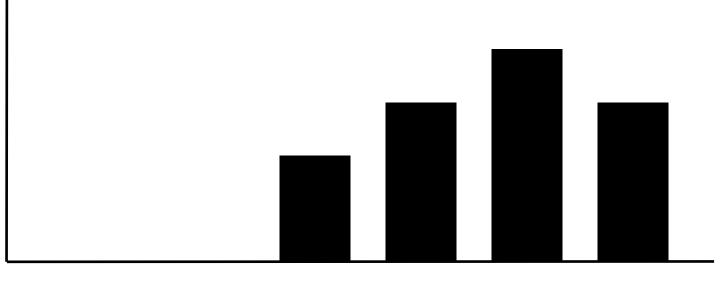
2.5-3s 3-3.5s 3.5-4s 4-4.5s 4.5-5s 5-5.5s



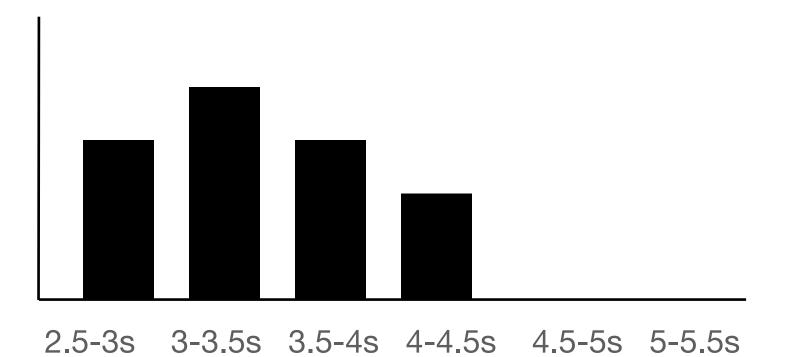
14% chance that the mean of a sample from each group is similar

TTEST pvalue = 0.14432

Une différence significative ?



2.5-3s 3-3.5s 3.5-4s 4-4.5s 4.5-5s 5-5.5s



unlikely two samples will have the same mean

TTEST pvalue = 0.00097

Significance level

If a test of significance gives a **p-value lower** than the significance level, such results are informally referred to as 'statistically significant'.

Popular levels of significance are :

- 10% (0.1),
- 5% (0.05),
- 1% (0.01),
- 0.5% (0.005), and
- 0.1% (0.001).

Significance testing

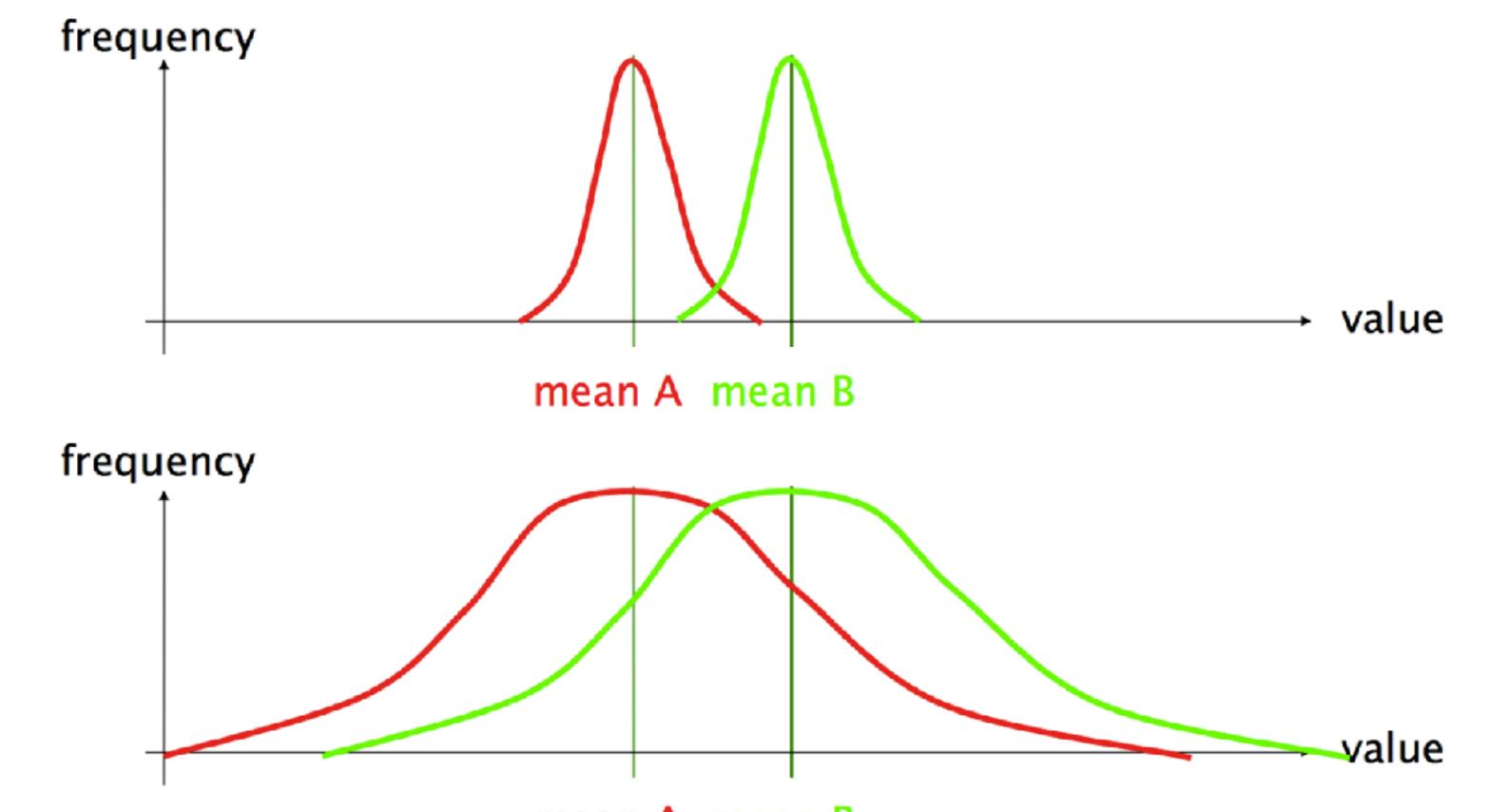
Gives p:

- The probability that two population have the same mean
- Not probability the result is due to chance...

In HCI:

- p < 0.05 (= 5% probability) is a convention (or 0.01)
- a smaller p (e.g. 0.00001) doesn't make the result more significant.
- a significant result is different from an important result

Comparing values Is there a significant difference between two measures?



mean A mean B

via http://www.medien.ifi.lmu.de/lehre/ws1213/mmi2/uebung/slides10.pdf

DO NOT

If p>0.05 say:

- "our tests showed that there was no difference"
- significant difference -> impact
- no significant difference -> nothing

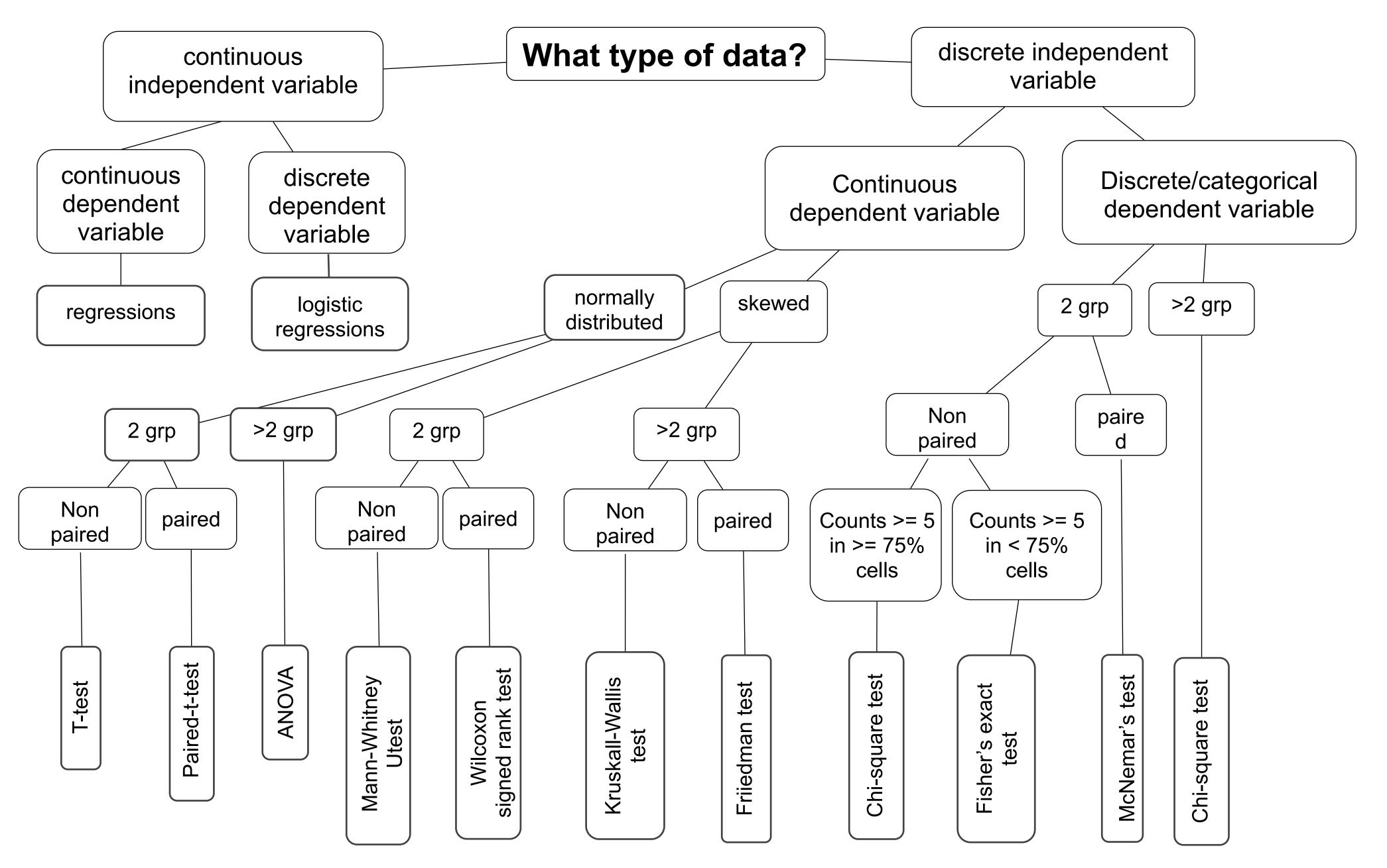
(it fails to reject the null hypothesis).

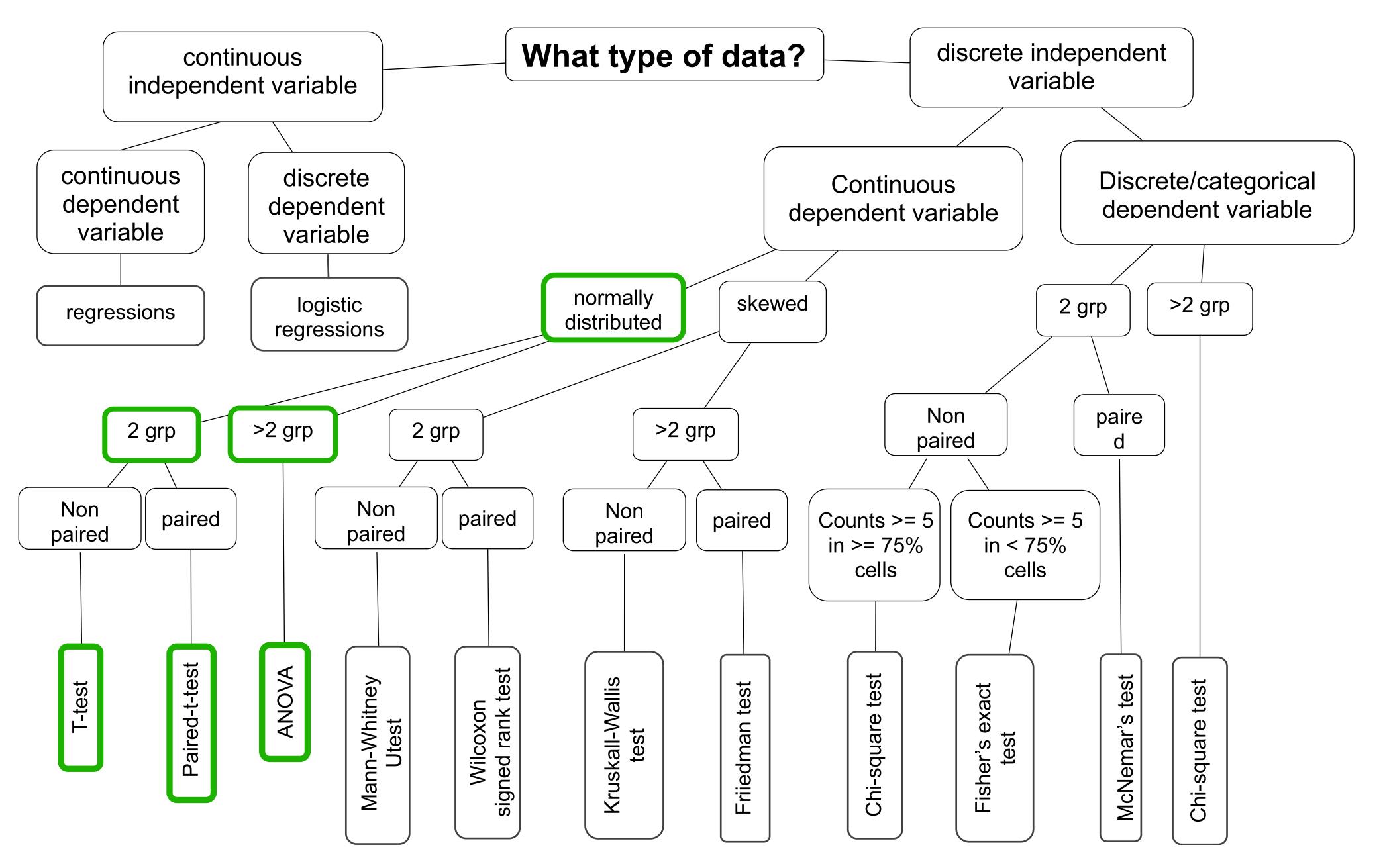
With significance testing, you cannot show that there is no difference!

It only means that there is **not enough evidence to reject the null hypothesis**

Statistical analysis

- Practice
- Checking your data
- Significance testing with t-tests
- Significance testing with Anova
- Measuring effect sizes
- Beyond significance testing





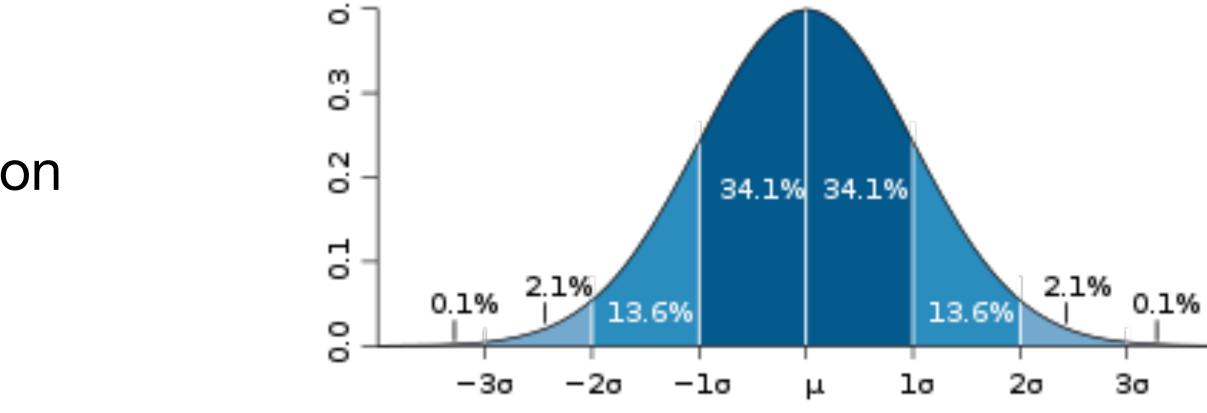
(Student's) t-test

Looks at the relationship between two data sets

Designed for

- small sample (= few measurements)
- unknown (mean and) standard deviation \bullet
- but has to be normally distributed \bullet

4



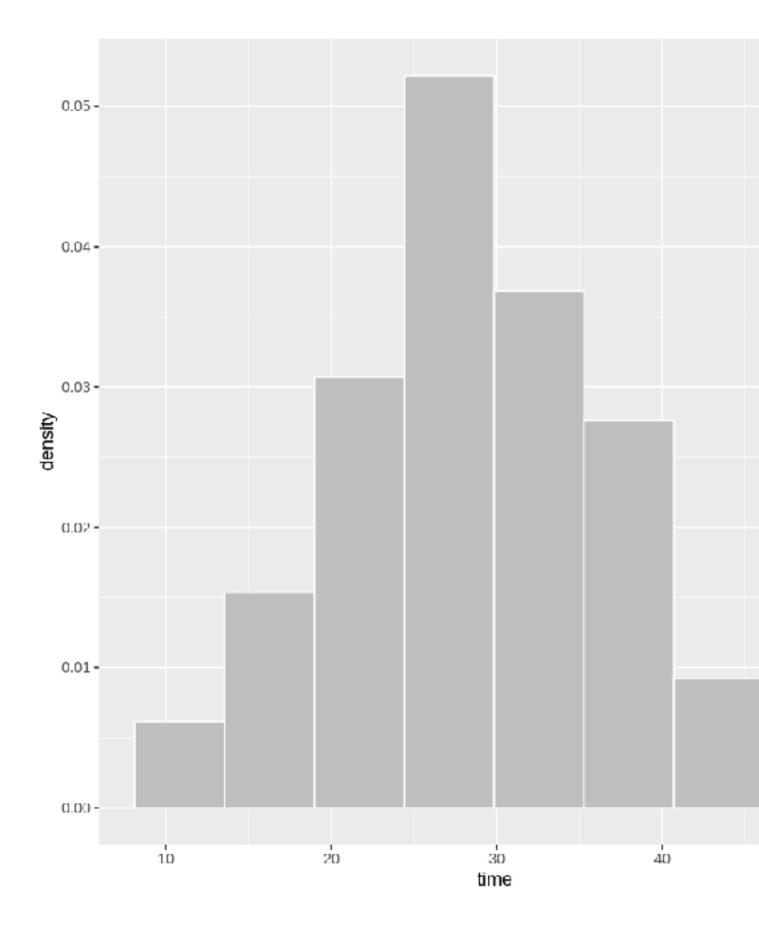
Parametric tests

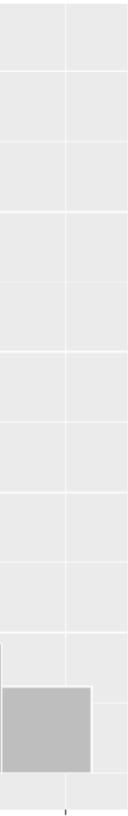
- Les tests paramétriques font généralement les hypothèses suivantes :
- 1. les points de données doivent être indépendants les uns des autres
- 2. supposer que les données sont normalement distribuées
- 3. homogénéité de la variance
- Les tests non paramétriques ne font aucune hypothèse sur la distribution normale

Looking at your data distribution

https://colab.research.google.com/drive/1ls8hWFtInLXOoHqpU7C5jPR2vHLO8y3D?usp=sharing

```
ggplot(data, aes(x = time)) +
    geom histogram(aes(y =..density..),
                   bins=8, # or specify manually :
                   \# breaks = seq(0, 60, by = 10),
                   colour = "white", fill="grey75")
```



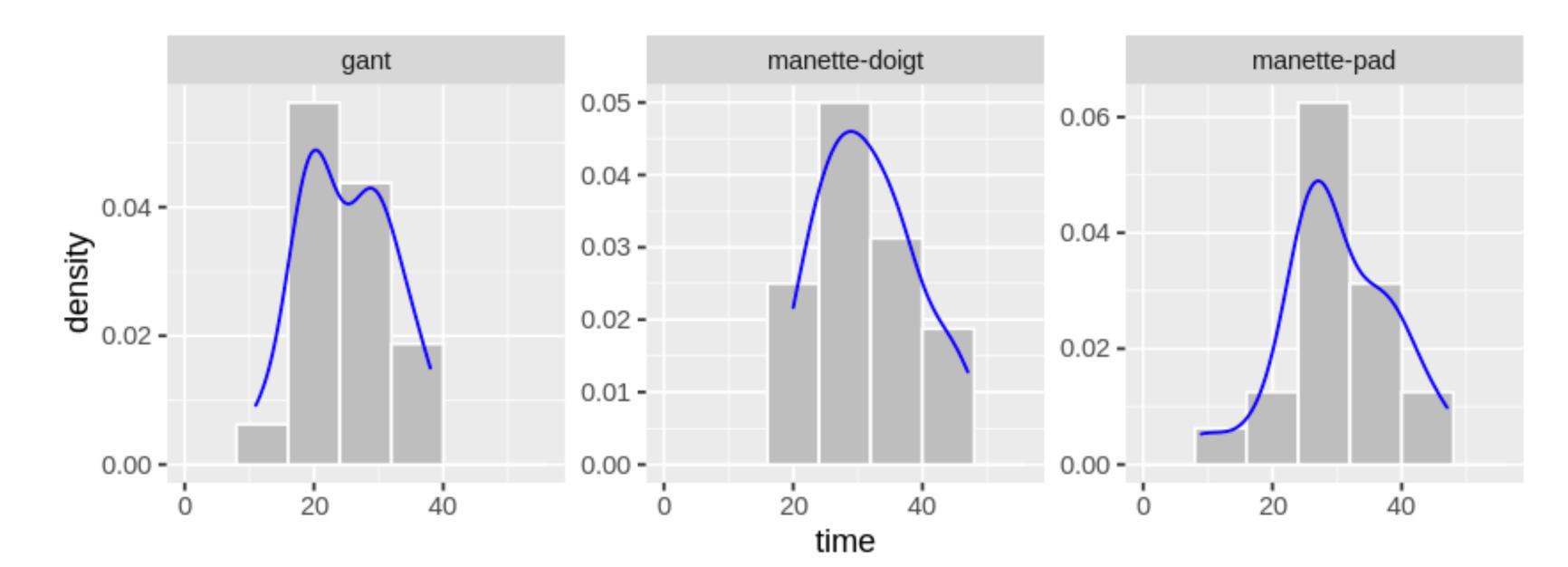


50

Looking at your data distribution

https://colab.research.google.com/drive/1ls8hWFtInLXOoHqpU7C5jPR2vHLO8y3D?usp=sharing

ggplot(data, aes(x=time)) + geom histogram(aes(y=..density..), breaks = seq(0, 60,colour = "white", f facet wrap(~method, scales = "free" geom density(aes(y=..density..), co.



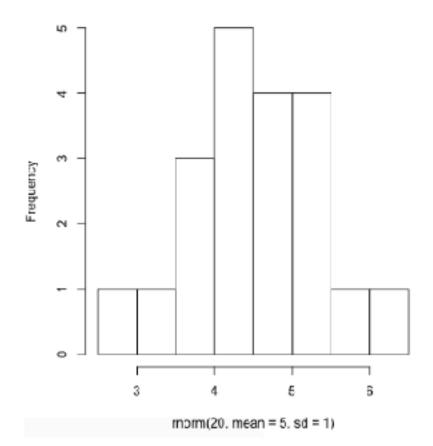
Shapiro-Wilk pour tester la normalité

> shapiro.test(rnorm(20, mean=5, sd=1))

Shapiro-Wilk normality test

data: rnorm(20, mean = 5, sd = 1)
W = 0.96325, p-value = 0.6106

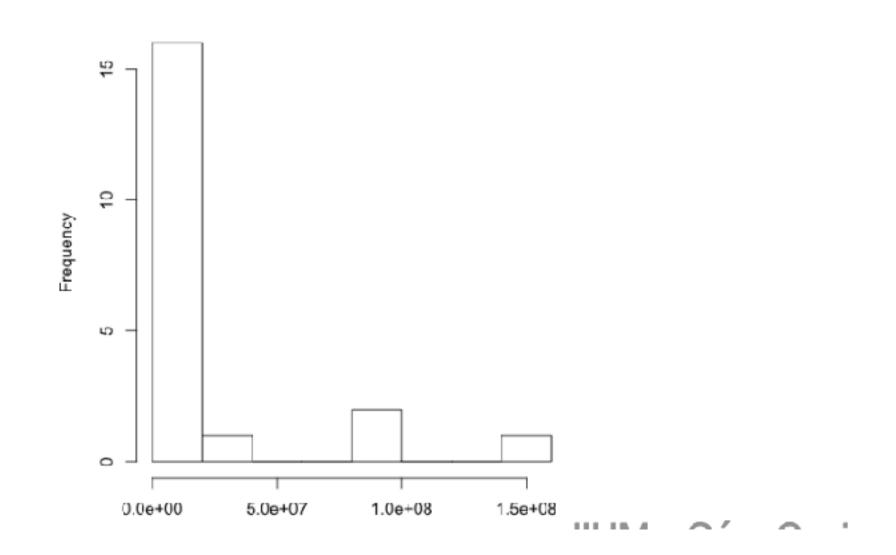
Histogram of rnorm(20, mean = 5, sd = 1)



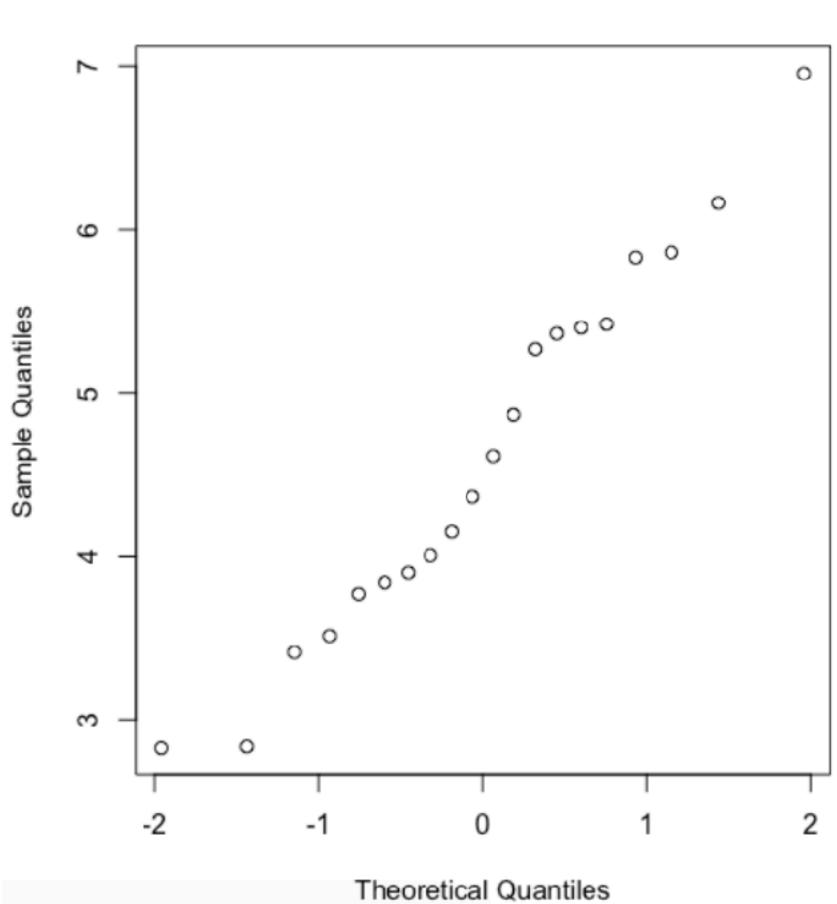
> shapiro.test(rnorm(20, mean=5, sd=1)^10)

Shapiro-Wilk normality test

data: rnorm(20, mean = 5, sd = 1)^10
W = 0.81394, p-value = 0.001405



QQPlot tracé quantile-quantile - contrôle visuel (subjectif)



Normal Q-Q Plot

t-test in R paired or unpaired

between subject experiment

```
# unpaired
```

within subject experiment

Un-paired t-test Between subject

pad", 3] t = -2.0438, df = 36.271, p-value = 0.04828 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -10.25904782 -0.04095218sample estimates: mean of x mean of y 24.95 30.10

"An unpaired student t-test showed no significant difference between the two devices."

t.test(data[data["method"]=="gant",3], data[data["method"]=="manette-pad",3]) data: data[data["method"] == "gant", 3] and data[data["method"] == "manette-

Paired t-test Within subject

paired = TRUE)) pad", 3] t = -5.6248 df = 19, p-value = 2.008e-05 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -7.066334 -3.233666 sample estimates: mean of the differences -5.15

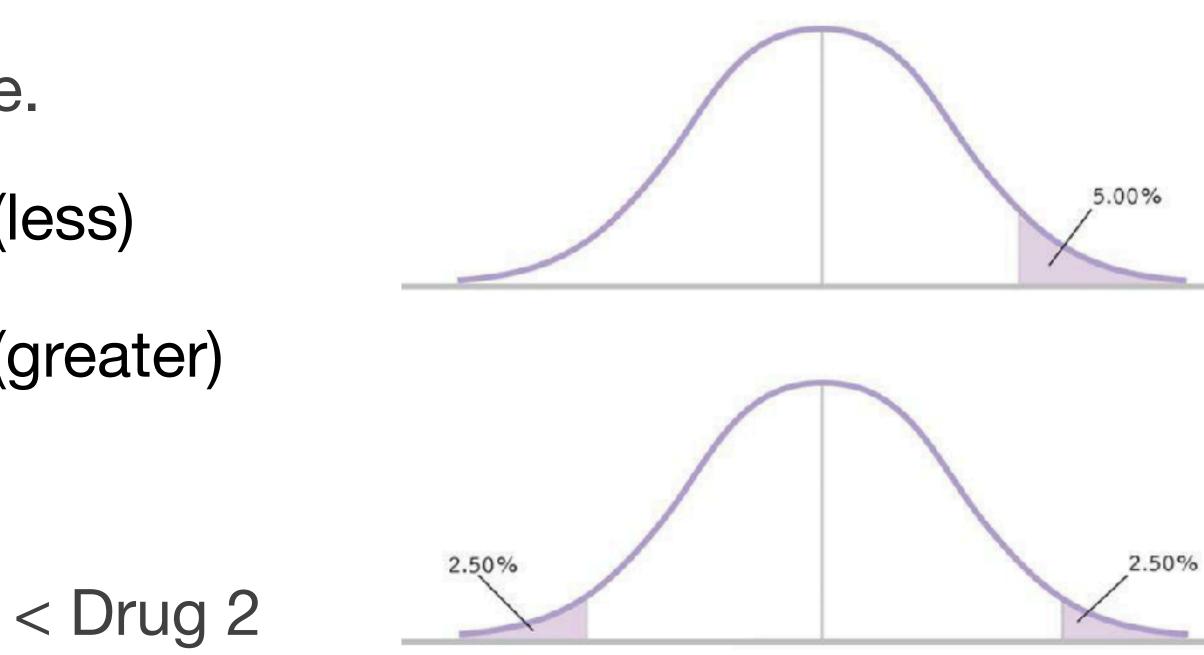
"A paired student t-test showed significant difference between the two devices (two-tailed t(19) = -5.6248, p < 0.05)"

t.test(data[data["method"]=="gant",3], data[data["method"]=="manette-pad",3], data: data[data["method"] == "gant", 3] and data[data["method"] == "manette-

Tails in t-tests = effect direction

one-tail: only one side of the effect, i.e. effect of shampoo 1 > shampoo 2 (less) or effect of shampoo 1 < shampoo 2 (greater)

two-tails: effect of drug 1 is > and/or < Drug 2



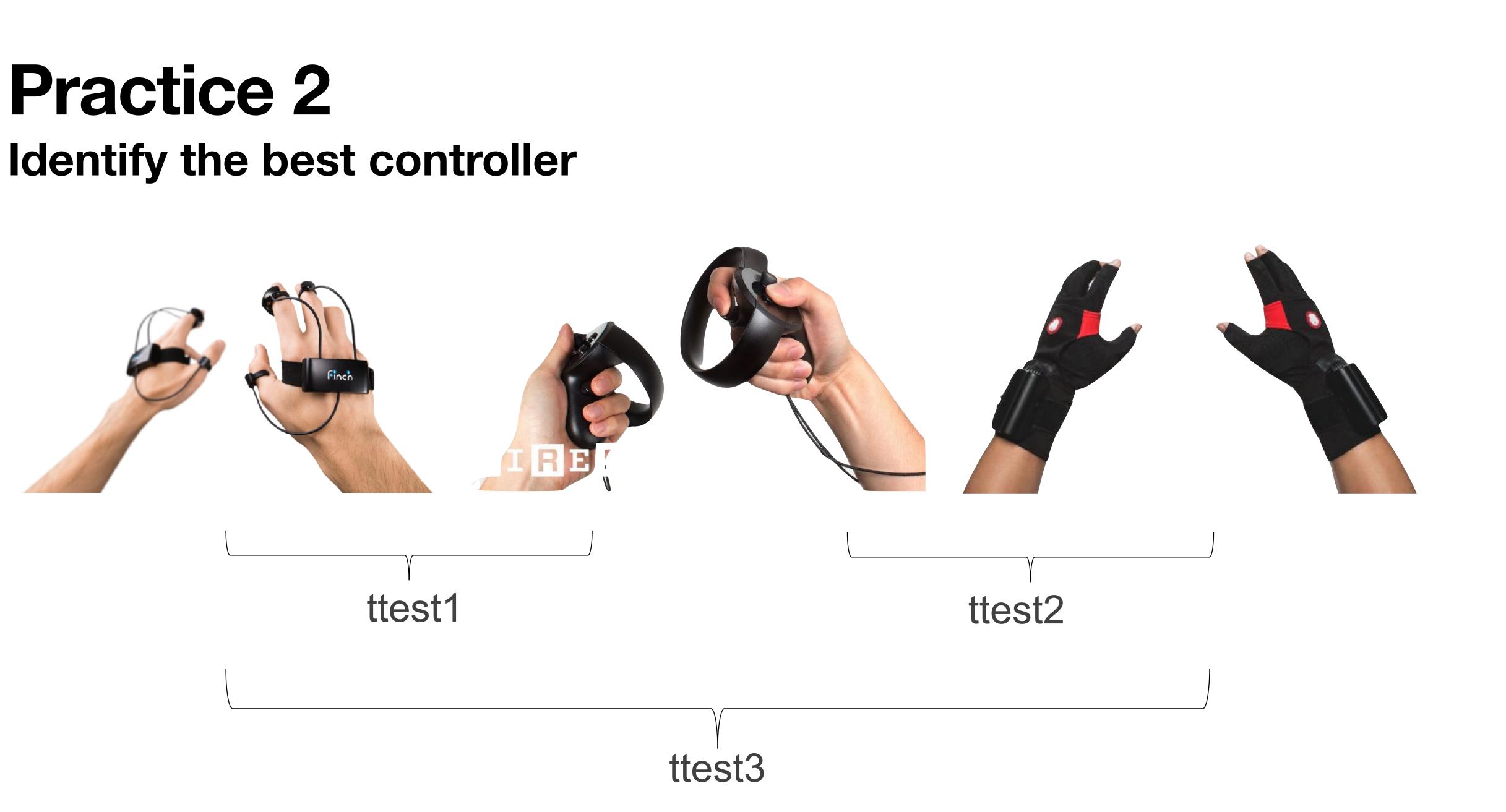
Summary so far

- Explain what is hypothesis testing
- Identify the limit of hypothesis testing (we cannot prove that things are similar) Explain what is a p value and a significance value
- Explain what is a t-test and when to use it
- Explain the difference between within and between subject studies
- Explain what is a Bonferroni correction and find the new significance level given an experimental design

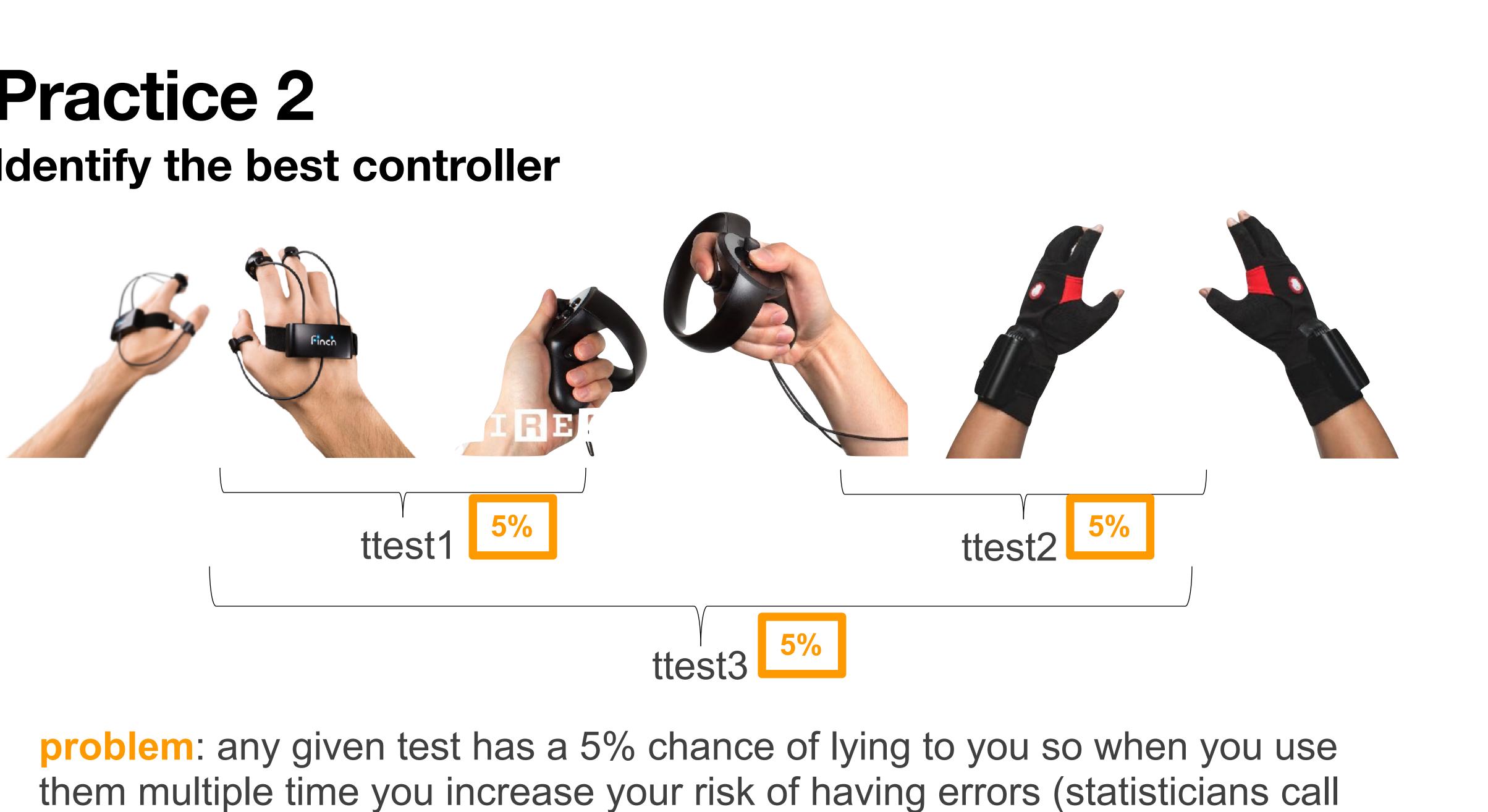
Practice 2 Identify the best controller

What if we have more than two variables?

Practice 2



Practice 2 Identify the best controller



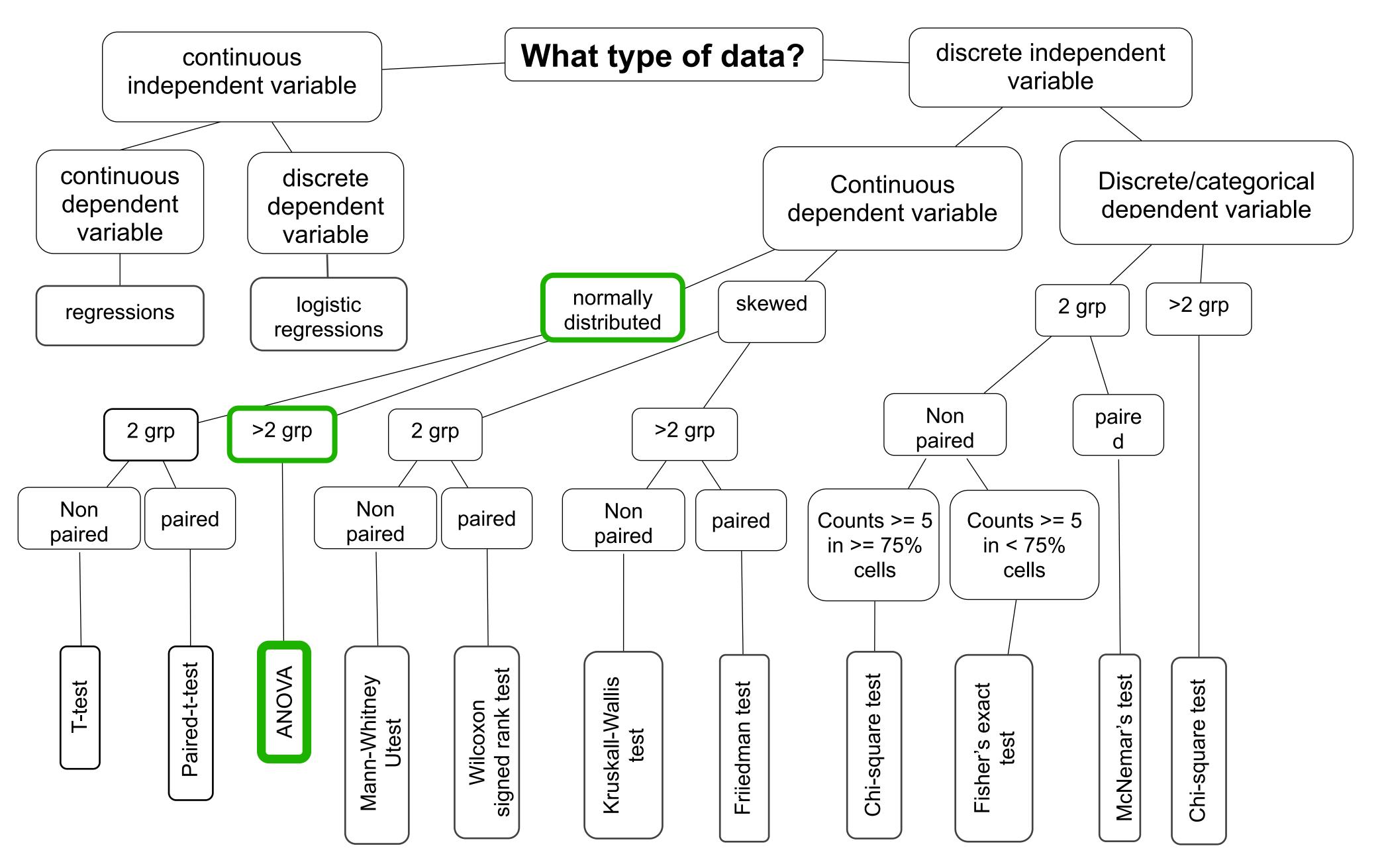
this a "type I error")

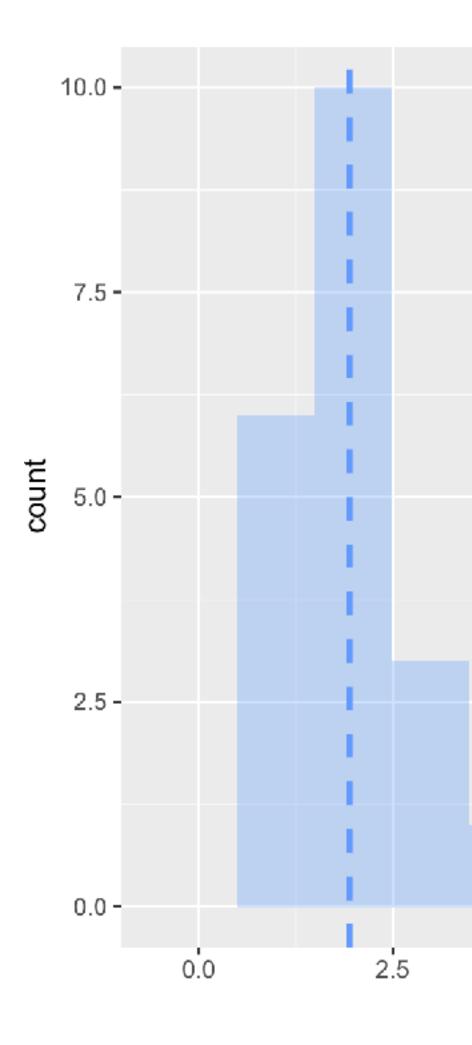
bonferroni correction

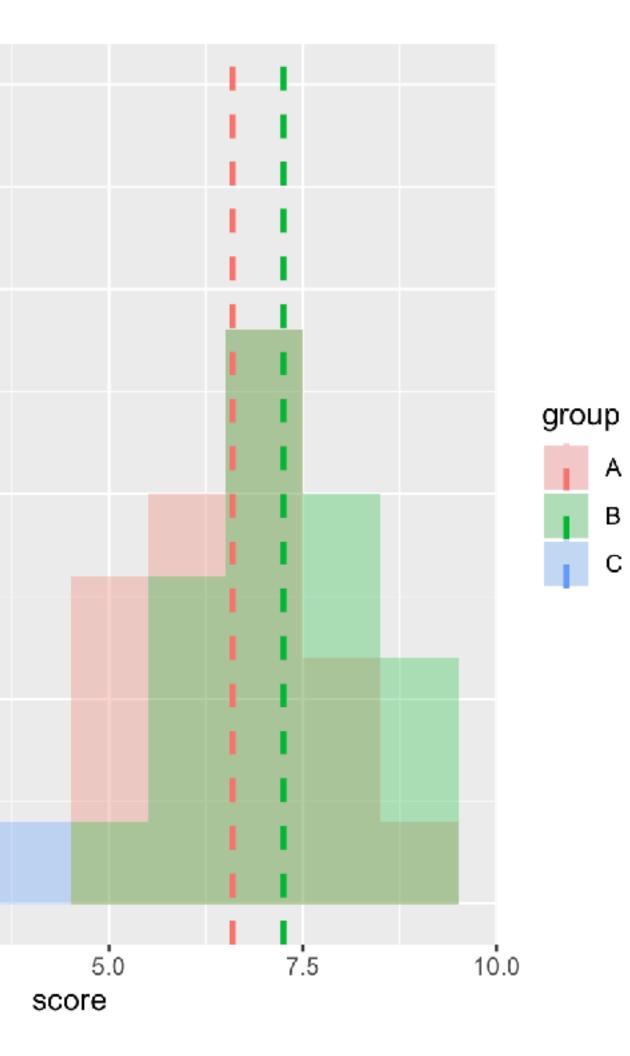
- when testing n hypotheses, test each one against 0.05/n
- in our example we would need to use 0.05/3 as a significant threshold instead of 0.05

Statistical analysis

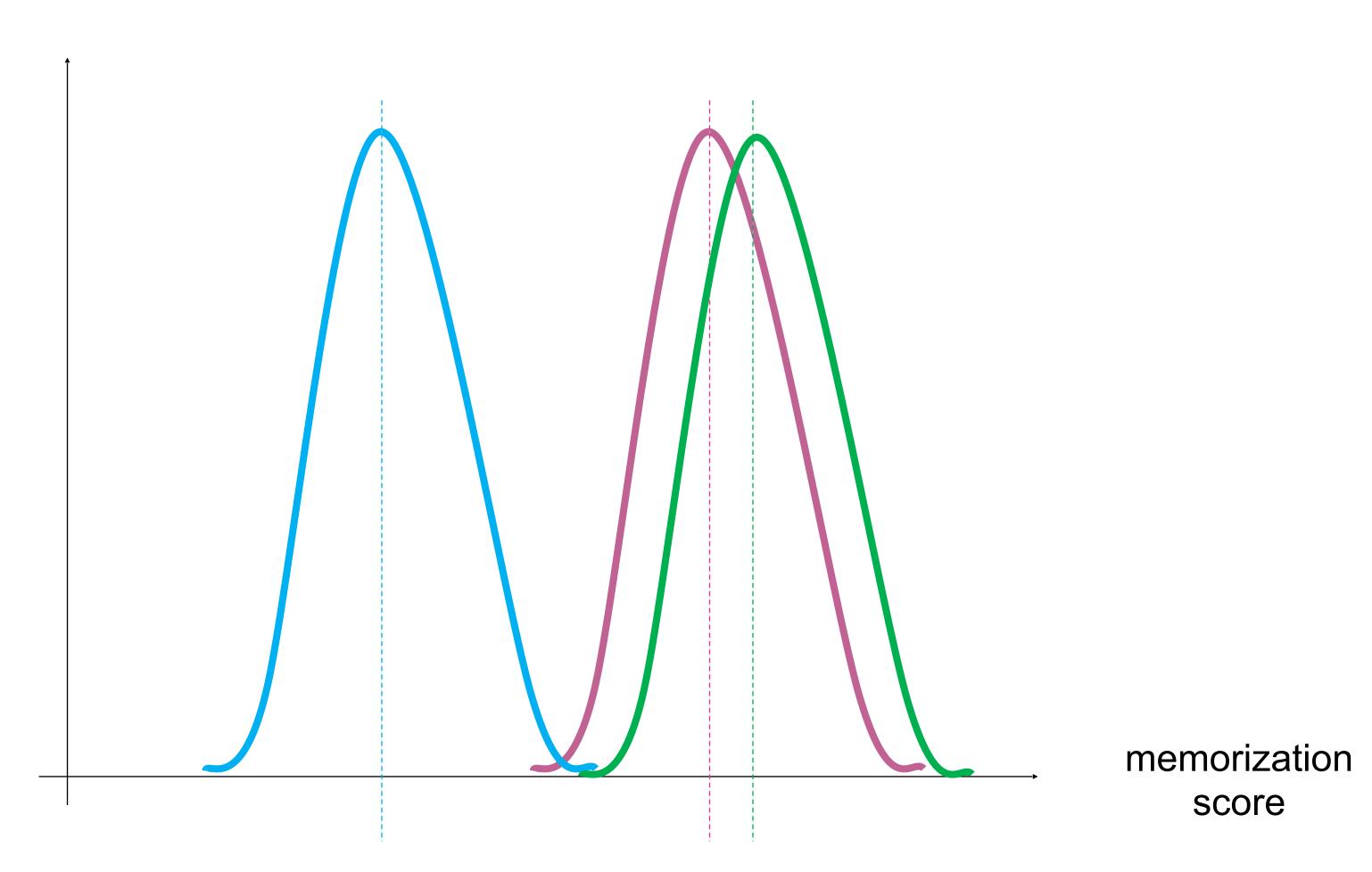
- Practice
- Checking your data
- Significance testing with t-tests
- Significance testing with Anova
- Measuring effect sizes
- Beyond significance testing







А



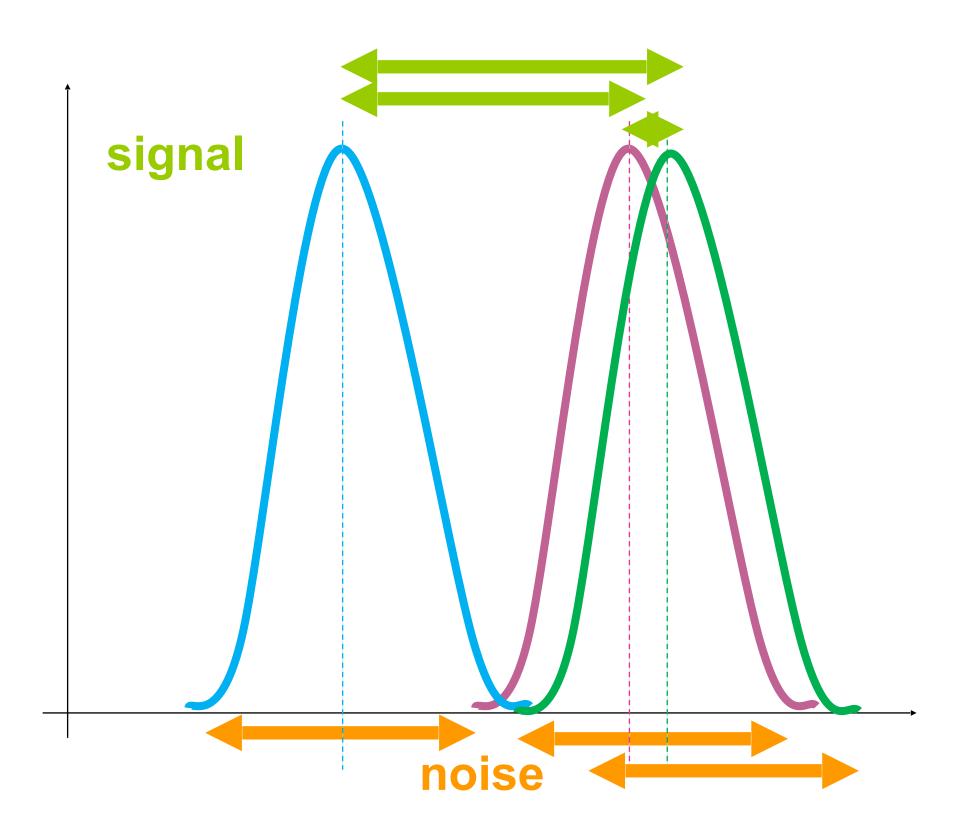
(let's assume again these are normally distributed)

count

Any statistical tests

signal noise

difference between group means variability of groups



Anova types

Plan d'expérience	Variables indépendantes (IV)	Nombre de niveaux pour chaque IV	Types de test
Between-group	1	2	Independent-samples t test
	1	3 ou plus	One-way ANOVA
	2 ou plus	2 ou plus	Factorial ANOVA
Within-group	1	2	Paired-samples t test
	1	3 ou plus	Repeated measures ANOVA
	2 ou plus	2 ou plus	Repeated measures ANOVA
Mixed-group	2 ou plus	2 ou plus	Mixed-design ANOVA

Anova

results = afex::aov ez(data = data,id = 'subject', # subject id column dv = 'time', # dependent variable within = c('method'), # within-subject independent variables between = NULL , # between-subject independent variables subject*condition Anova Table (Type 3 tests)

Response: time Effect df MSE F 1 method 1.54, 29.31 14.82 21.77 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1 Sphericity correction method: GG

fun aggregate = mean, # average multiple repetitions together for each

anova table = list(es = 'ges') # effect size = generalized eta squared

Statistical analysis

- Practice
- Checking your data
- Significance testing with t-tests
- Significance testing with Anova
- Measuring effect sizes
- Beyond significance testing

Anova

results = afex::aov ez(data = data,id = 'subject', # subject id column dv = 'time', # dependent variable within = c('method'), # within-subject independent variables between = NULL , # between-subject independent variables subject*condition Anova Table (Type 3 tests) Response: time Effect df MSE 1 method 1.54, 29.31 14.82 21.77 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1 Sphericity correction method: GG

fun aggregate = mean, # average multiple repetitions together for each

anova table = list(es = 'ges') # effect size = generalized eta squared

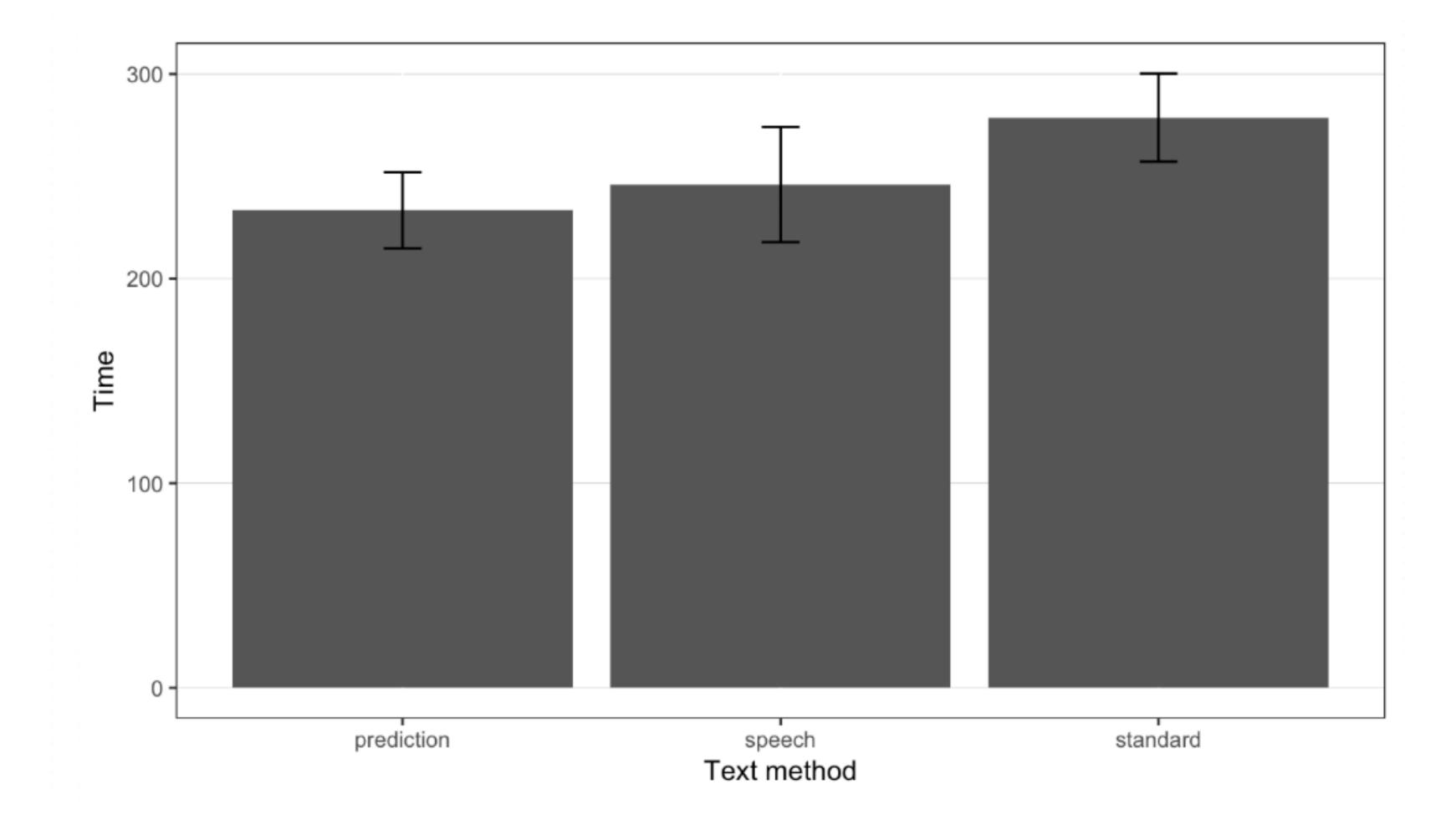
Effect sizes

Table 5.1 Effect sizes commonly used for null hypothesis significance testing and their values considered small, medium, and large effect sizes. This table was created based on existing literature (Cohen 1998; Field 2009; Mizumoto and Takeuchi 2008)

Statistical methods	Effect size	Small	Medium	Large
t-test	Cohen's d	0.2	0.5	0.8
ANOVA	η^2 and η_p^2	0.01	0.06	0.14
Non-parametric tests	R	0.1	0.3	0.5
Correlation	R	0.1	0.3	0.5

[Modern statistical methods for HCI, p.92]

95% confidence intervals (CI)



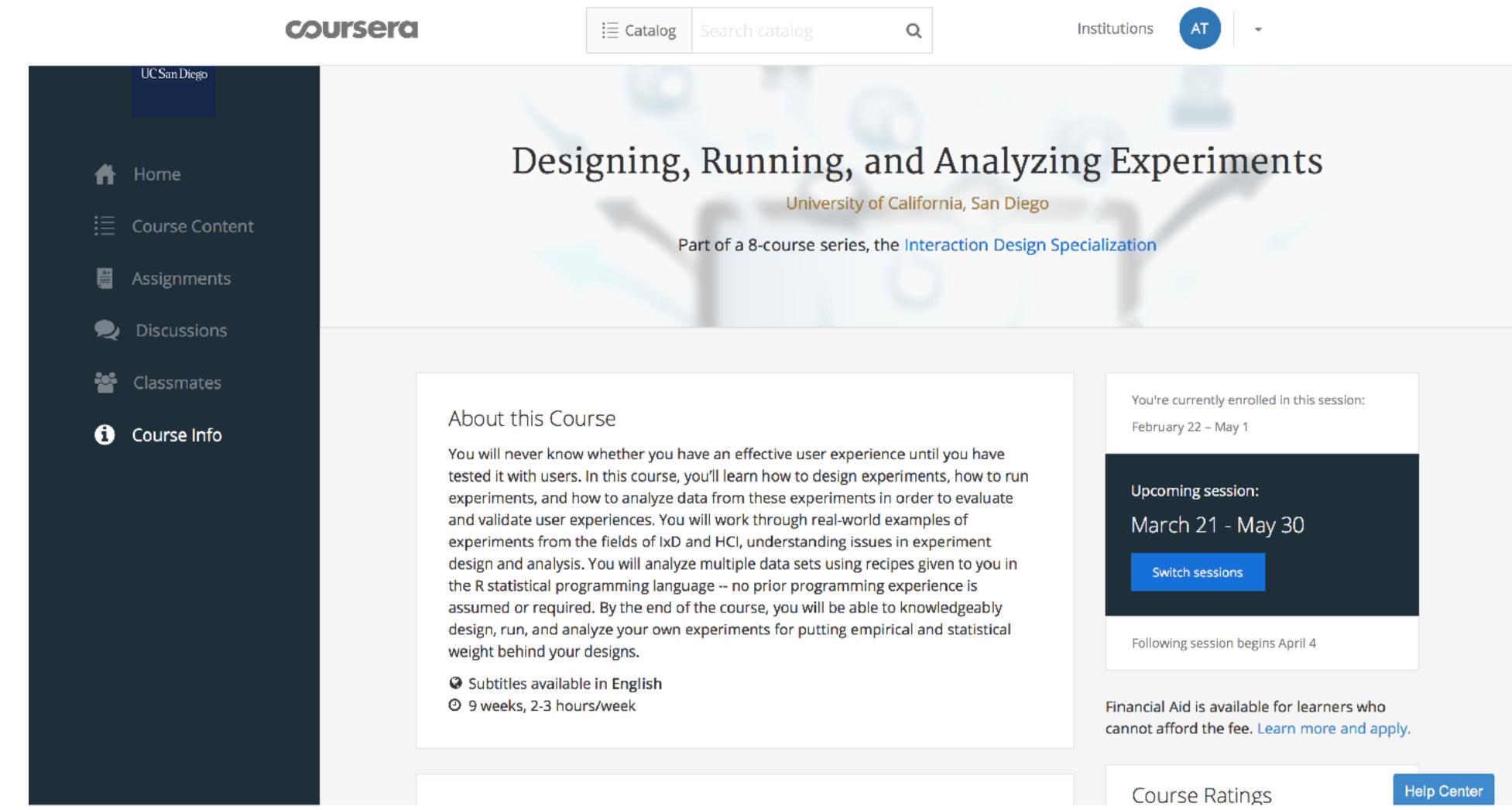
Post-hoc tests

When more than 2 levels, identify where the significant effect comes from.

Statistical analysis

- Practice
- Checking your data
- Significance testing with t-tests
- Significance testing with Anova
- Measuring effect sizes
- Beyond significance testing

Going further



https://www.coursera.org/learn/designexperiments

